Christian Forums

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

  • Focus on the Family

    Strengthening families through biblical principles.

    Focus on the Family addresses the use of biblical principles in parenting and marriage to strengthen the family.

  • Guest, Join Papa Zoom today for some uplifting biblical encouragement! --> Daily Verses
  • The Gospel of Jesus Christ

    Heard of "The Gospel"? Want to know more?

    There is salvation in no other, for there is not another name under heaven having been given among men, by which it behooves us to be saved."

[_ Old Earth _] Viral Evidence of Common Decent

2024 Website Hosting Fees

Total amount
$1,048.00
Goal
$1,038.00
C

CrimsonTide

Guest
http://www.talkorigins.org/faqs/comdesc ... troviruses

Endogenous retroviruses provide yet another example of molecular sequence evidence for universal common descent. Endogenous retroviruses are molecular remnants of a past parasitic viral infection. Occasionally, copies of a retrovirus genome are found in its host's genome, and these retroviral gene copies are called endogenous retroviral sequences. Retroviruses (like the AIDS virus or HTLV1, which causes a form of leukemia) make a DNA copy of their own viral genome and insert it into their host's genome. If this happens to a germ line cell (i.e. the sperm or egg cells) the retroviral DNA will be inherited by descendants of the host. Again, this process is rare and fairly random, so finding retrogenes in identical chromosomal positions of two different species indicates common ancestry.

Confirmation:
In humans, endogenous retroviruses occupy about 1% of the genome, in total constituting ~30,000 different retroviruses embedded in each person's genomic DNA (Sverdlov 2000). There are at least seven different known instances of common retrogene insertions between chimps and humans, and this number is sure to grow as both these organism's genomes are sequenced (Bonner et al. 1982; Dangel et al. 1995; Svensson et al. 1995; Kjellman et al. 1999; Lebedev et al. 2000; Sverdlov 2000). Figure 4.4.1 shows a phylogenetic tree of several primates, including humans, from a recent study which identified numerous shared endogenous retroviruses in the genomes of these primates (Lebedev et al. 2000). The arrows designate the relative insertion times of the viral DNA into the host genome. All branches after the insertion point (to the right) carry that retroviral DNA - a reflection of the fact that once a retrovirus has inserted into the germ-line DNA of a given organism, it will be inherited by all descendents of that organism.

The Felidae (i.e. cats) provide another example. The standard phylogenetic tree has small cats diverging later than large cats. The small cats (e.g. the jungle cat, European wildcat, African wildcat, blackfooted cat, and domestic cat) share a specific retroviral gene insertion. In contrast, all other carnivores which have been tested lack this retrogene (Futuyma 1998, pp. 293-294; Todaro et al. 1975).

Potential Falsification:
It would make no sense, macroevolutionarily, if certain other mammals (e.g. dogs, cows, platypi, etc.), had these same retrogenes in the exact same chromosomal locations. For instance, it would be incredibly unlikely for dogs to also carry the three HERV-K insertions that are unique to humans, as shown in the upper right of Figure 4.4.1, since none of the other primates have these retroviral sequences.
 
My, you like being antagonistic, don't you?

Everybody else: Rising to the bait is what they want. I won't tell you what to do, but remember that before you do anything.
 
"They?" "We?" There is someone with a degree in psychology roaming these forums if you need someone to talk to. :biggrin
 
Free said:
"They?" "We?" There is someone with a degree in psychology roaming these forums if you need someone to talk to. :biggrin
Crimson is a separate person from me.

See I already deflected criticism. :tongue
 
Nevermind, I didn't realize that Rogue9 wrote that, I thought it was one of you two. My bad. :oops:
 
CrimsonTide said:
http://www.talkorigins.org/faqs/comdesc/section4.html#retroviruses

Endogenous retroviruses provide yet another example of molecular sequence evidence for universal common descent. Endogenous retroviruses are molecular remnants of a past parasitic viral infection. Occasionally, copies of a retrovirus genome are found in its host's genome, and these retroviral gene copies are called endogenous retroviral sequences. Retroviruses (like the AIDS virus or HTLV1, which causes a form of leukemia) make a DNA copy of their own viral genome and insert it into their host's genome. If this happens to a germ line cell (i.e. the sperm or egg cells) the retroviral DNA will be inherited by descendants of the host. Again, this process is rare and fairly random, so finding retrogenes in identical chromosomal positions of two different species indicates common ancestry.

Confirmation:
In humans, endogenous retroviruses occupy about 1% of the genome, in total constituting ~30,000 different retroviruses embedded in each person's genomic DNA (Sverdlov 2000). There are at least seven different known instances of common retrogene insertions between chimps and humans, and this number is sure to grow as both these organism's genomes are sequenced (Bonner et al. 1982; Dangel et al. 1995; Svensson et al. 1995; Kjellman et al. 1999; Lebedev et al. 2000; Sverdlov 2000). Figure 4.4.1 shows a phylogenetic tree of several primates, including humans, from a recent study which identified numerous shared endogenous retroviruses in the genomes of these primates (Lebedev et al. 2000). The arrows designate the relative insertion times of the viral DNA into the host genome. All branches after the insertion point (to the right) carry that retroviral DNA - a reflection of the fact that once a retrovirus has inserted into the germ-line DNA of a given organism, it will be inherited by all descendents of that organism.

The Felidae (i.e. cats) provide another example. The standard phylogenetic tree has small cats diverging later than large cats. The small cats (e.g. the jungle cat, European wildcat, African wildcat, blackfooted cat, and domestic cat) share a specific retroviral gene insertion. In contrast, all other carnivores which have been tested lack this retrogene (Futuyma 1998, pp. 293-294; Todaro et al. 1975).

Potential Falsification:
It would make no sense, macroevolutionarily, if certain other mammals (e.g. dogs, cows, platypi, etc.), had these same retrogenes in the exact same chromosomal locations. For instance, it would be incredibly unlikely for dogs to also carry the three HERV-K insertions that are unique to humans, as shown in the upper right of Figure 4.4.1, since none of the other primates have these retroviral sequences.

Very good, now what does all that mean in layman's terms?
 
evanman said:
Very good, now what does all that mean in layman's terms?
There's these really small things called Viruses, that get snagged on our genetic code. It gets passed on to all offspring, and remains for a very long time, even past speciation, that is, when we get new species.

Think about it this way, you have 8 different types of fish in a pond. 1 species of fish is infected with an endogenous retrovirus. It passes that virus on to all it's offspring. You then leave the pond for a few years, or even a few million, and you'll be able to tell which fish came from the infected one, because the virus will remain in the same place in the dna.
 
When a virus attacks a cell, a cell has certain defense mechanisms that it may employ. One of which is a set of enzymes that break down the viral DNA. The DNA, may in some cases be incorporated into the cells genome, as a non-functional codon. These serve no purpose, and are simply there by accident.

These remnants in a cells genetic code, if it happened in a sex cell that reproduced successfully, get passed down from generation to generation through sexual reproduction.

Because the viral remnants are different from infection to infection, they serve as a sort of fingerprint for tracing evolutionary pathways. If two species have the same endogenus retrovirus, it means that they have a common ancestor.

We share the same set of endogenour retroviri as other primates, which indicates that we have a common ancestor.
 
Back
Top