A
Asyncritus
Guest
THE LEAF CUTTING ANT (PARASOL ANTS)
We have in this example, another phenomenal illustrative piece on the helplessness of the evolution theory to explain observable facts.
These are observable, have been observed, and there is no guesswork or speculation involved. The whole mechanism sprang full blown to birth, or it couldn’t have happened at all. Judge for yourselves.
The Parasol Ant
The parasol ant is a real pest to farmers and causes a lot of damage to crops, because the foraging ants go out in numbers, cut large amounts of leaf material off crop plants, and this costs money.
They go forth, cut the leaves with their specially constructed jaws, and carry them back to their nests. They climb trees up to 100-feet tall and cut out small pieces of leaves. They then carry these fragments, weighing as much as 50 times their body weight, back to their homes.
Sometimes they must travel 200 feet, equal to an average human walking about 6 miles with 5,000 lbs. on his/her back! The forest floor is converted to a maze of busy highways full of these moving leaf fragments.
They travel a distance equivalent to a 6 foot man walking 5 miles in a forest carrying 5000lbs on his back! So how do they get home? Incredibly, they leave a trail of pheromone-like substances on their trails.
Could they have invented such chemicals? Certainly not!
Back at the nest, the marvels begin. The ants were once thought to use the ‘parasols’ as covering to shield them from the rain. That, however, is not the case.
The leaf cutters take the material back to their nests, and there, in specially designed underground chambers, cut them up into minute little pieces, spray them with excrement, saliva, and then plant a particular species of fungus on the decaying material.
But that is not the whole story.: http://www.apologeticspress.org/articles/2627
"Incredibly, the ants do not eat the leaves. Rather, they cultivate miniature gardens of fungus on pieces of leaves. which they chew and then store in underground compost piles.
Several million ants usually inhabit their colonies, and the garden chambers can extend as deep as twelve feet underground.
In order to fulfill all the needs of the colony, the ants divide the work among classes. Each class of workers is designed to do a special job.
The biggest ants have powerful jaws to cut leaves, flower petals, and blades of grass. They bring these big pieces back to the nest where slightly smaller workers cut and dice the plant material into tiny lumps. The smallest workers chew these up into balls, adding bits of fungus.
The ants’ saliva contains ingredients that help the fungus break down the plant material, and also kills harmful bacteria and other fungi.
Small workers strip off wax and other parts of the plants that the fungus cannot use. Workers dump this refuse into special waste chambers.
The relationship between the ants and the fungus is symbiotic, meaning that both benefit. The fungus benefits because the ants feed it, protect it, and spread it from place to place. In return, the fungus grows a clump of special hyphae. Each clump is like an instant three-course meal, which the smallest ant workers use to feed the larvae."
This is the only fungus the ants eat and feed the larvae on.
Note particularly carefully that without the ant, the fungus is doomed, and without the fungus, the ant is doomed. BOTH ANT AND FUNGUS HAD TO APPEAR SIMULTANEOUSLY.
You may recall the difficulties faced when researchers attempted to cultivate the Penicillium fungus in order to produce penicillin in the World War. Fleming, Florey and Chain were awarded Nobel prizes for their discovery (Fleming), extraction and purification of the antibiotic (Chain and Florey).
Here are ants who have 'discovered' the single species of fungus that suits them, and 'developed' effective cultivation methods of the fungus.
They have 'discovered' how to obtain and produce the the right composting medium for its growth. They maintain the correct temperature for it's cultivation and growth. Instinct, you see. Perhaps they too should be awarded the Nobel prizes for the animal world!
When the young queen leaves the nest, she takes a piece of the fungus with her to act as seeding material!
While Mueller and Schultz worked on the ants’ relationship to fungi, a team of biologists at the University of Toronto were noting—and wondering about—the presence of a persistent and ravaging mold, called Escovopsis, in attine gardens.
How was it, they asked, that this potent parasite didn’t regularly overrun the attine nests?
Taking note of a white powder on the undersides of the attine ants, they ultimately identified it as a type of bacteria, Streptomyces, that secretes antibiotics.
The antibiotics were keeping the Escovopsis at bay. More important, they were doing so over long periods of time, without the Escovopsis becoming totally resistant.
Evolution cannot account for the origin of this complex organisation, biochemistry,
specific knowledge of fungal cultivation,
specific knowledge of fungal identification,
pre-programmed behaviour patterns of the workers,
reccognition of which parts are waste, knowledge that a piece of fungus will act as a cutting which could be used to propagate the only fungus they eat,
the scissor like jaws which do the leaf-cutting, the selection of proper leaves which can be used as their composting material, the production of the pheromone-like ‘scent’ which marks their tracks – all this and more.
At every step of their discovery process, error would have caused the extinction of the species. Recall that this is the only species of fungus that they eat.So if they got that wrong, species extinction would have taken place.
Which raises another of these curious anomalies.
If this is the only fungus they eat, and this is the only way that the fungus is propagated, then which came first? The ant, or the fungus?
The ant depends on the fungus, and the fungus depends on the ant, like the old lock and key analogy. Without the lock, the key is useless, and without the key, the lock is equally so.
Consider the number of individual pieces of instinctive behaviour the ants exhibit, and ask yourself, how did these
a. start and
b.get into the genome?
Last edited by a moderator: